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Abstract 

The main goal of this project is to understand the mechanisms of proton-coupled electron transfer 

reactions, with particular emphasis on their relevance and utility for solar-to-fuel light harvesting. The 

main focus of our work has been identifying coupling between the electronic and protonic degrees of 

freedom in a wide range of materials. In particular, we have sought to identify themes and principles 

that dictate how protons move in the aftermath of an electronic excitation. The results can be divided 

into three groups. First, we have studied a molecule with excited state proton transfer capability and two 

identical protons for transfer. We have correlated the electronic charge density redistribution to proton 

transfer and have identified that electronic relaxation after a single proton transfer extinguishes the 

propensity of the second proton to transfer. Our work on this system led us to the interesting concept of 

photobasicity, where light excitation of a photobase can be used to remove a proton from a target 

molecule. This phenomenon has the potential to be used in photocatalysis. Our next finding was 

identifying how electronic charge transfer couples to hydrogen bonding and proton transfer in a hydrogen 

bonded solid. This is based on an experiment that connects excitations on three different energy scales 

(electronic, OH vibrations, and low-frequency lattice motion) to each other all at once. Extensive pump-

probe and Raman spectroscopy experiments reveal that upon electron transfer, low frequency lattice 

modes are excited which in turn modulate the hydrogen bonding and inter-site proton transfer. Our third 

area of work is more zoomed out of the molecular scale and aims to connect light excitation to bulk 

protonic conductivity. In this work we have relied upon the analogy between a semiconductor and an 

electrolyte to induce proton conductivity in a photoacid doped electrolyte. This work is a step towards 

bringing electronic and protonic devices to the same platform. Finally, we have had a long-standing effort 

for understanding the influence of pH on fundamental electrochemical reactions. This work has resulted 

in to unique insights into the intricacies of the pH dependence of electrochemical rates. In summary, the 

results of our work lays a foundation engineering systems, both molecular and materials scale, that take 

advantage of coupling between electronic and protonic degrees of freedom to drive chemistry. 

 

 

 

 

 

 

 

 

 

DISTRIBUTION A: Distribution approved for public release.



1. Ultrafast resolution of an intramolecular acid/base reaction in the electronically excited 

state: 

Excited State Intramolecular Proton Transfer (ESIPT) is the conceptual stepping stone for understanding 

coupled electron-proton motion in photocatalysis. The questions of interest are: How soon after an 

electronic excitation the proton moves? What type of charge rearrangements are required to induce 

protonic motion? In a molecule with two transferrable protons, do both protons transfer, or does one 

impede the transfer of the other? 

Towards this end, we have studied coupled electron-proton motion in the excited state of a recently 

synthesized dye. As shown in figure (1), we have resolved the emergence of the proton transfer band and 

have identified that the proton transfer process takes in the order of 300 fs or faster. We have also 

identified that although two transferrable protons exist, only one of them is transferred in the excited state. 

This finding is relevant for designing multi-proton redox agents, where transfer of several protons in the 

excited state is desirable.  

An important finding in our work was the difference in proton transfer time between the doubly 

protonated molecule (diole) and a modified singly protonated version of it in which the proton was 

substituted with a methoxy group (ethoxyol). We found out that proton transfer time in ethoxyol was 

significantly faster than in diole. With calculations from the group of Tom Miller at Caltech, we arrived at 

the conclusion that in the diole a balance of hydrogen bonding between the two sides of the molecule 

results into slightly larger hydrogen bond lengths compared to the ethoxyol. Such a hydrogen bond 

balance idea seems to explain the observed kinetics.   

Figure 1. (a) Electron proton transfer in optically excited bisimino isoindole model molecule. (b) The 

proton is transferred in less than 300 fs in the excited state, as evidenced by the emergence of 

stimulated emission at the proton transfer band. 

(a)  (b)  
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Figure 2. (a) Similarities in the absorption and emission spectra between the singly protonated 

molecule (ethoxy-ol) and the doubly protonated (diole) molecule suggests that only a single proton 

transfers occurs in the excited state in both cases. (b) Computational work explains the origin of one 

proton transfer in the excited state. After the first proton transfer, electronic charge density (green) re-

flows back towards the proton donor side of the molecule. This charge reflow extinguishes the drive 

for the second proton transfer. 

Figure 3. (a) The ethoxyol (top) exhibits faster proton transfer time compared to diol (bottom). (b) 

Computational work by Miller group at Caltech revealed the origin of this difference. The molecule 

acts like a seesaw. When both sides are hydrogen bonded, the average bond length is longer than when 

one side is hydrogen bonded. This difference in hydrogen bond length is consistent with the 

experiment and alludes to a partially tunneling mechanism in the excited state proton transfer. Further 

kinetic isotope tests confirmed this mechanism. 

(a)  
(b)  

(a)  (b)  
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An important outcome of this work was the observation of excess charge density on the proton acceptor 

in our calculations. Such excess charge density seems to be part of the drive for proton transfer. In simple 

terms, as the oxygen atom becomes more acidic, the nitrogen atom becomes more basic in the excited 

state. We hypothesized that such excess charge density can be optically generated in an isolated molecule 

without the proton donor residing on the same molecule. Thus a drive for proton removal or photobasicity 

can be induced in a molecule optically. 

To test this hypothesis we measured ground and excited state basicity in a series of 5-substituted 

quinolines using the conventional Förster cycle. Indeed, as expected quinoline exhibited photobasicity, 

and furthermore its photobascity showed a linear trend with respect to the electron-withdrawing capability 

of the substituent. Thus we not only demonstrated photobasicity in this molecule, but also showed how to 

control and tune it. Such molecules, when incorporated in oxidation catalysts, can serve as proton removal 

agents. 

 

  

Figure 4. The concept of photobasicity was identified and explored as a consequences of our 

intramolecular proton transfer study. Excitation of a nitrogen containing heteroaromatic results into 

piling of charge density on the nitrogen, which renders it more basic. This photobascity can be tuned 

by the electron-withdrawing strength (related to the Hammett parameter) of the substituent R. Our 

work reveals that the excited state pKa is more sensitive to the electron-withdrawing strength of the 

substituent than the ground state. 
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2. Electron and proton transfer in a solid made of the canonical redox couple benzoquinone 

and hydroquinone: 

PCET reactions involved in natural and artificial photocatalytic systems involve several electron-proton 

transfer steps, and are often embedded in a complicated environment with inconvenient spectroscopic 

access. To study PCET, simple and tractable models are desired. Towards that goal, we have prepared co-

crystals of one of the simplest two-electron two-proton redox couple hydroquinone/benzoquinone. 

The crystals are ideal charge transfer systems that involve both electron transfer and hydrogen bonding. 

We have used a short pulse to induce excited state charge transfer from hydroquinone to benzoquinone, 

and then measured the dynamics that follows the charge transfer using broad-band transient reflection. 

Our results suggest that the two redox couples come close to each other in the excited state and execute an 

underdamped vibrational motion lasting for several picoseconds. Evidence from Raman spectroscopy and 

observation of a Raman band at the frequency of the observed oscillations confirms that the oscillations 

arise from the relative face-to-face motion of the two redox couples. On an interesting note, albeit less 

relevant to photocatalysis, we have identified an acoustic shockwave propagating through the crystal. Our 

measurement was capable of measuring the dispersion of the acoustic shockwave in this crystal.  

Finally, we have probed this material in the OH stretch region after pumping it electronically. We observe 

that the probe in the OH stretch region also shows oscillations. Variation of phase and amplitude of these 

oscillations as a function of probe frequency reveal that there are transitions in the OH stretch region that 

are directly modulated by the low frequency phonons in the crystal. This experiment is possibly the 

clearest example of demonstrating coupling between electronic, low-frequency phonons, and hydrogen 

bonding degrees of freedom in a chemical system. 

 

 

 

 

 

 

 

 

  

Figure 5. (a) Formation of the charge-transfer hydrogen-bonded crystal quinhydrone. (b) Schematic of 

the optically induced charge transfer and the ensuing protonic motion initiated and probed by visible 

and mid-IR pulses respectively. (c) The response of quinhydrone over a large range of energy (notice 

the logarithmic scale). Our experiments identify the interplay of motions over such a large range of 

energy. 

(a)  

(b)  

(c)  
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3. Bulk Proton Conductivity Influenced by Electronic Excitation. 

To couple electronic excitation to bulk protonic conductivity, we have exploited an analogy between 

semiconductors and electrolytes. The bandgap of a semiconductor is the barrier towards generation of 

mobile charge. The same scenario can be envisaged for water, in which the water dissociation equilibrium 

can be related to a free energy or a gap towards ion pair generation. To access this gap optically, it is 

necessary to introduce photoacids into water, which release protons upon light excitation in the visible 

range. Thus in direct analogy to photoconductivity in a semiconductor, one arrives at a proton 

photoconductivity effect. We have exploited this analogy to perform the first report of photoinduced 

proton conductivity. 

  

Figure 6. (a) Mechanism of coupling between low frequency lattice modes and OH stretch. Lattice 

excitations modulates the distance between the charge transfer pairs. At small distances, HQ and BQ 

have better electronic overlap, thus charge density on HQ is reduced. This leads to a weaker OH bond. 

The reverse of this happens at larger separations. (b) Mechanism of coupling between electron transfer 

and low frequency lattice vibrations.  Optical excitation leads to rapid charge transfer from HQ to BQ. 

The ensuing slower lattice adjustment to this charge transfer results into launching low frequency 

optical phonons which modulate the HQ-BQ distance shown in (a). 

Figure 7. The analogy between a conventional semiconductor and an electrolyte or ionic liquid such as 

water. 

(a)  (b)  
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We have used a common photoacid, hydroxypyrene trisulfonic acid (HPTS), as our optical handle for 

modulating ionic conductivity. The photoacid is dissolved either in water or in a polymer matrix between 

two electrodes. The AC conductivity of the material is measured in dark and in light. The experiments 

clearly show that shining light changes the AC impedance of the material. The formalism that connects 

impedance to ionic concentration already exists in the literature. Using the conventional models for ionic 

conductivity, we can show that increase in ionic conductivity due to light plausibly explains the observed 

impedance change. 

 

 

 

 

 

 

 

 

 

 

 

 

4. Global View of the Influence of Protons on Water Oxidation Kinetics and the Introduction 

of Continuous Electrochemical Kinetic Diagrams. 

The coupling between electron and proton kinetics is not restricted to the ultrafast realm. Change in pH is 

known to influence both the rate and the onset potential of the water oxidation reaction. In this work, we 

did an extensive study of the influence of pH on electrochemical water oxidation on hematite. 

For the first time, we prepared diagrams that show the electron transfer parameter and the proton reaction 

order in two-dimensional plots. These diagrams provide a birds-eye view of the kinetic influence of 

protons on electrochemical reaction rate. Important information such as the acidic and basic mechanisms, 

surface adsorption and saturation, and mass-transport limits, can be gleaned from such diagrams in a 

relatively simple and visual way. 

The measured parameters, particularly the differences between the electron transfer parameter in the 

acidic and basic limits is interpreted in light of a model that accounts for concerted deprotonation and 

electron transfer from surface adsorbed water or hydroxyl groups. 

Figure 8. (a) Complex impedance of a photoacid doped material measured in the presence and absence 

of light. (b) A conventional circuit model with light-sensitive ionic impedance is used to explain the 

observed impedance spectra. 

(a)  (b)  
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We have extended these diagrams for hydrogen evolution as well. Currently, we are working on 

understanding the origin of the variation of rate and its sensitivity to pH and potential. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 6. (a-b) The proton reaction order and electron transfer parameter measured for water oxidation 

on hematite. Such two-dimensional representations were prepared for the first time in our group. (c) 

The observations in the diagrams are explained on the basis of a model that involves surface 

protonation and electron transfer. All diagonal arrows are hypothesized coupled electron-proton transfer 

(CPET) steps. 

(a)  (b)  

(c)  
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Impact 

The findings of this work are anticipated to impact several aspects the basics of our knowledge proton 

dynamics, in particular in the context of proton requiring redox reactions. The three most immediately 

applicable consequences of work are listed below. 

 Use of photobasicity in catalysts: We propose that a photobase be incorporated as a functional 

component of a conventional organometallic catalyst and tuned to transduce light excitation to 

proton removal power. This will be the first time that the proton removal barrier of a redox 

reaction is tackled separately with assistance from light.  

 Establishing a new paradigm for proton transfer and balance of hydrogen bonds: Our work 

on the “seesaw” model for hydrogen bonding reveals that even in the excited state, proton transfer 

is sensitive to minute changes in distance. We anticipate that the seesaw mechanism studied in 

this work can be exploited in catalyst design with the aim of modulating hydrogen bonding. For 

example, one can foresee design themes in which the strength of hydrogen bonding in the core of 

a catalyst is finely modulated (and perhaps photochemically actuated) by a counterbalanced 

hydrogen bond located farther away. To realize such goals, it is necessary to study this effect 

further. In particular, if the fulcrum of the seesaw is composed of a single C-C bond and 

hydrogen bonds are placed along the body of the seesaw at variable distances, a potential 

extension of the mechanical “law of the lever” to molecular scales may be achievable.  

 Proton conductivity controlled by light: Our work on proton conductivity initiated by light 

opens the possibility of driving protonic currents towards a heterogeneous catalytic surface that 

consumes protons. For that reason, further work is needed to control unidirectional flow of 

protons (i.e. photocurrent), as opposed to merely increasing photoconductivity. 
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